skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Velazco-Garcia, Jose"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Heart disease is highly prevalent in developed countries, causing 1 in 4 deaths. In this work we propose a method for a fully automated 4D reconstruction of the left ventricle of the heart. This can provide accurate information regarding the heart wall motion and in particular the hemodynamics of the ventricles. Such metrics are crucial for detecting heart function anomalies that can be an indication of heart disease. Our approach is fast, modular and extensible. In our testing, we found that generating the 4D reconstruction from a set of 250 MRI images takes less than a minute. The amount of time saved as a result of our work could greatly benefit physicians and cardiologist as they diagnose and treat patients. Index Terms—Magnetic Resonance Imaging, segmentation, reconstruction, cardiac, machine learning, ventricle 
    more » « less
  3. Heart disease is highly prevalent in developed countries, causing 1 in 4 deaths. In this work we propose a method for a fully automated 4D reconstruction of the left ventricle of the heart. This can provide accurate information regarding the heart wall motion and in particular the hemodynamics of the ventricles. Such metrics are crucial for detecting heart function anomalies that can be an indication of heart disease. Our approach is fast, modular and extensible. In our testing, we found that generating the 4D reconstruction from a set of 250 MRI images takes less than a minute. The amount of time saved as a result of our work could greatly benefit physicians and cardiologist as they diagnose and treat patients. 
    more » « less
  4. null (Ed.)
    This work presents an interventional planning software to be used in conjunction with a robotic manipulator to perform transrectal MR guided prostate biopsies. The interventional software was designed taking in consideration a generic manipulator used under the two modes of operation: side-firing and end-firing of the biopsy needle. Studies were conducted with urologists using the software to plan virtual biopsies. The results show features of software relevant for operating efficiently under the two modes of operation. 
    more » « less
  5. The emerging potential of augmented reality (AR) to improve 3D medical image visualization for diagnosis, by immersing the user into 3D morphology is further enhanced with the advent of wireless head-mounted displays (HMD). Such information-immersive capabilities may also enhance planning and visualization of interventional procedures. To this end, we introduce a computational platform to generate an augmented reality holographic scene that fuses pre-operative magnetic resonance imaging (MRI) sets, segmented anatomical structures, and an actuated model of an interventional robot for performing MRI-guided and robot-assisted interventions. The interface enables the operator to manipulate the presented images and rendered structures using voice and gestures, as well as to robot control. The software uses forbidden-region virtual fixtures that alerts the operator of collisions with vital structures. The platform was tested with a HoloLens HMD in silico. To address the limited computational power of the HMD, we deployed the platform on a desktop PC with two-way communication to the HMD. Operation studies demonstrated the functionality and underscored the importance of interface customization to fit a particular operator and/or procedure, as well as the need for on-site studies to assess its merit in the clinical realm. Index Terms—augmented reality, robot-assistance, imageguided interventions. 
    more » « less
  6. The emerging potential of augmented reality (AR) to improve 3D medical image visualization for diagnosis, by immersing the user into 3D morphology is further enhanced with the advent of wireless head-mounted displays (HMD). Such information-immersive capabilities may also enhance planning and visualization of interventional procedures. To this end, we introduce a computational platform to generate an augmented reality holographic scene that fuses pre-operative magnetic resonance imaging (MRI) sets, segmented anatomical structures, and an actuated model of an interventional robot for performing MRI-guided and robot-assisted interventions. The interface enables the operator to manipulate the presented images and rendered structures using voice and gestures, as well as to robot control. The software uses forbidden-region virtual fixtures that alerts the operator of collisions with vital structures. The platform was tested with a HoloLens HMD in silico. To address the limited computational power of the HMD, we deployed the platform on a desktop PC with two-way communication to the HMD. Operation studies demonstrated the functionality and underscored the importance of interface customization to fit a particular operator and/or procedure, as well as the need for on-site studies to assess its merit in the clinical realm. 
    more » « less
  7. Prostate biopsy is considered as a definitive way for diagnosing prostate malignancies. Urologists are currently moving towards MR-guided prostate biopsies over conventional transrectal ultrasound-guided biopsies for prostate cancer detection. Recently, robotic systems have started to emerge as an assistance tool for urologists to perform MR-guided prostate biopsies. However, these robotic assistance systems are designed for a specific clinical environment and cannot be adapted to modifications or changes applied to the clinical setting and/or workflow. This work presents the preliminary design of a cable-driven manipulator developed to be used in both MR scanners and MR-ultrasound fusion systems. The proposed manipulator design and functionality are evaluated on a simulated virtual environment. The simulation is created on an in-house developed interventional planning software to evaluate the ergonomics and usability. The results show that urologists can benefit from the proposed design of the manipulator and planning software to accurately perform biopsies of targeted areas in the prostate. 
    more » « less
  8. This work presents a platform that integrates a customized MRI data acquisition scheme with reconstruction and three-dimensional (3D) visualization modules along with a module for controlling an MRI-compatible robotic device to facilitate the performance of robot-assisted, MRI-guided interventional procedures. Using dynamically-acquired MRI data, the computational framework of the platform generates and updates a 3D model representing the area of the procedure (AoP). To image structures of interest in the AoP that do not reside inside the same or parallel slices, the MRI acquisition scheme was modified to collect a multi-slice set of intraoblique to each other slices; which are termed composing slices. Moreover, this approach interleaves the collection of the composing slices so the same k-space segments of all slices are collected during similar time instances. This time matching of the k-space segments results in spatial matching of the imaged objects in the individual composing slices. The composing slices were used to generate and update the 3D model of the AoP. The MRI acquisition scheme was evaluated with computer simulations and experimental studies. Computer simulations demonstrated that k-space segmentation and time-matched interleaved acquisition of these segments provide spatial matching of the structures imaged with composing slices. Experimental studies used the platform to image the maneuvering of an MRI-compatible manipulator that carried tubing filled with MRI contrast agent. In vivo experimental studies to image the abdomen and contrast enhanced heart on free-breathing subjects without cardiac triggering demonstrated spatial matching of imaged anatomies in the composing planes. The described interventional MRI framework could assist in performing real-time MRI-guided interventions. 
    more » « less
  9. Abstract BackgroundThis study presents user evaluation studies to assess the effect of information rendered by an interventional planning software on the operator's ability to plan transrectal magnetic resonance (MR)‐guided prostate biopsies using actuated robotic manipulators. MethodsAn intervention planning software was developed based on the clinical workflow followed for MR‐guided transrectal prostate biopsies. The software was designed to interface with a generic virtual manipulator and simulate an intervention environment using 2D and 3D scenes. User studies were conducted with urologists using the developed software to plan virtual biopsies. ResultsUser studies demonstrated that urologists with prior experience in using 3D software completed the planning less time. 3D scenes were required to control all degrees‐of‐freedom of the manipulator, while 2D scenes were sufficient for planar motion of the manipulator. ConclusionsThe study provides insights on using 2D versus 3D environment from a urologist's perspective for different operational modes of MR‐guided prostate biopsy systems. 
    more » « less